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1 Stochastic Processes

In this section, we consider a probability space (Ω,F ,P).

Definition 1.1 (Stochastic Process). Any family X = {Xt, t ≥ 0} of random variables taking
values in Rd is called a continuous-time stochastic process, or simply a stochastic process.
A process X can be seen as a family of random variables indexed by time:

Xt : ω ∈ (Ω,F) 7→ Xt(ω) ∈ (Rd,B(Rd)).

Here, {t ≥ 0} = R+ represents the time, Ω is the sample space, B(R+) is the Borel sigma-algebra
on R+, and F is a sigma-algebra on Ω. The process takes values in Rd, which is equipped with the
Borel sigma-algebra B(Rd).

We can then be interested in the distributions of the random variables Xt:

Definition 1.2. Let X = {Xt, t ≥ 0} be a stochastic process.

• [Stationary process] A process X is said to be stationary if for any h ≥ 0, the process
X·+h := {Xt+h, t ≥ 0} is equivalent to X.

• [Stationary increments - Independent increments] A process X is said to have station-
ary increments if for any t, the distribution of Xt+h−Xt does not depend on t. The process X
is said to have independent increments if for any n ≥ 1 and any 0 = t0 ≤ t1 ≤ · · · ≤ tn ∈ R+,
the random variables Xt1 , Xt2 −Xt1 , · · · , Xtn −Xtn−1

are independent.
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• [Sample path of a process] For any ω ∈ Ω, the function t 7→ Xt(ω) is called the sample
path of X (associated with the state ω). The process is said to have continuous sample paths
if for any ω ∈ Ω, the function t 7→ Xt(ω) is continuous on R+.

• [Measurable process] A process X = {Xt}t≥0 is said to be measurable if the mapping
(t, ω) 7→ Xt(ω) is measurable when defined on the product space R+ × Ω, which is equipped
with the product sigma-algebra B(R+)⊗F .

This means that for any Borel set A ∈ B(Rd), the set

{(t, ω) : Xt(ω) ∈ A}

belongs to B(R+)⊗F .

2 Filtrations and Measurability

A stochastic process X models the evolution over time of a random quantity. Observing the
evolution of X over time conveys information: the past realizations of X and its current realization
can inform about its future evolution. The mathematical tool that allows us to translate this idea
of evolving information is the notion of filtration.

Definition 2.1. Let X = (Xt)t≥0 be a stochastic process.

• [Filtration] A filtration is a family F = {Ft, t ≥ 0} of sigma-algebras such that Fs ⊂ Ft ⊂ F
for all 0 ≤ s ≤ t. If the probability space (Ω,F ,P) is equipped with a filtration F , we refer to
it as the filtered probability space (Ω,F ,P;F).

• [Adapted process] We say that X = {Xt, t ≥ 0} is F-adapted if for all t ≥ 0, the random
variable Xt is Ft-measurable.

3 Gaussian Processes

This paragraph is dedicated to a particular type of process: Gaussian processes. Before defining
these processes, we start with a brief review of Gaussian vectors.

Proposition 3.1. Let X be a Gaussian random variable with E[X] = µ and Var(X) = σ2, then
its characteristic function is given by:

ΦX(ξ) = E[eiξX ] = exp

(
iξµ− ξ2σ2

2

)
,

Proof. Let X be a Gaussian random variable with mean E[X] = µ and variance Var(X) = σ2. The
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characteristic function of X is:

ΦX(ξ) = E[eiξX ]

=

∫ ∞

−∞
eiξxfX(x) dx

=

∫ ∞

−∞
eiξx

1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
dx

=
1√
2πσ2

∫ ∞

−∞
exp

(
iξx− (x− µ)2

2σ2

)
dx

=
1√
2πσ2

∫ ∞

−∞
exp

(
−−2σ2iξx+ x2 + µ2 − 2xµ

2σ2

)
dx

=
1√
2πσ2

∫ ∞

−∞
exp

(
−x2 − 2(µ+ iξσ2)x+ µ2)

2σ2

)
dx

=
1√
2πσ2

∫ ∞

−∞
exp

(
− (x− (µ+ iξσ2))2

2σ2

)
︸ ︷︷ ︸

=1

exp

(
−−(µ+ iξσ2)2 + µ2

2σ2

)
dx

= exp

(
−−µ2 + ξ2σ4 − 2σ2iξµ+ µ2

2σ2

)
= exp

(
−ξ2σ2

2

)
exp (iξµ)

= exp

(
iξµ− ξ2σ2

2

)
.

Thus, the characteristic function of a Gaussian random variable X is:

ΦX(ξ) = exp

(
iξµ− ξ2σ2

2

)
.

Definition 3.2 (Gaussian Vector). Let X = (X1, · · · , XN ) be a random vector defined on (Ω,F ,P).
It is said to be Gaussian if and only if every linear combination of its components is a Gaussian
random variable. That is, for any a ∈ RN , the random variable ⟨a,X⟩ =

∑N
k=1 akXk is Gaussian.

Proposition 3.3. Let X1, · · · , XN be independent Gaussian random variables. Then the vector
(X1, · · · , XN ) is a Gaussian vector.

Proof. The proof uses the injectivity of the characteristic function (see section A.2 for details).
According to the definition of a Gaussian vector, it is sufficient to show that the random variable
⟨a,X⟩ = aTX =

∑N
k=1 akXk is a Gaussian random variable for any a ∈ RN . Let mk = E[Xk],

σ2
k = var(Xk). Then

Φ⟨a,X⟩(ξ) = E
[
eiξ⟨a,X⟩

]
= E

[
eiξ

∑N
k=1 akXk

]
= E

[
N∏

k=1

eiξakXk

]
=

N∏
k=1

E
[
eiξakXk

]
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Since Xk are independent,

=

N∏
k=1

exp

(
iξakmk − ξ2σ2

ka
2
k

2

)
= exp

(
iξ

N∑
k=1

akmk −
ξ2
∑N

k=1 σ
2
ka

2
k

2

)

which is the characteristic function of a Gaussian random variable with mean
(∑N

k=1 akmk

)
and

variance
(∑N

k=1 σ
2
ka

2
k

)
. By the injectivity of the characteristic function, ⟨a,X⟩ is a Gaussian random

variable.

Proposition 3.4. If X := (X1, · · · , XN ) is a Gaussian vector, then its characteristic function is:

ΦX : ξ ∈ RN 7→ exp

(
i⟨ξ,E[X]⟩ − 1

2
⟨ξ,Σξ⟩

)
where Σ is the covariance matrix of X.

Proof. According to the definition of a Gaussian vector, for any ξ ∈ RN , the random variable∑N
k=1 ξkXk is a Gaussian random variable. Therefore,

Φ⟨ξ,X⟩(1) = E[ei⟨ξ,X⟩] = E
[
ei

∑N
k=1 ξkXk

]
= exp

(
i · E

[
N∑

k=1

ξkXk

]
− 1

2
var

(
N∑

k=1

ξkXk

))

= exp

i ⟨ξ,E[X]⟩ − 1

2

N∑
k,l=1

ξkξlcov(Xk, Xl)


= exp

(
i ⟨ξ,E[X]⟩ − 1

2
⟨ξ,Σξ⟩

)
.

Theorem 3.5. Let X := (X1, · · · , XN ) be a Gaussian vector. Its components are independent if
and only if they are uncorrelated.

Proof. The proof of ”independence implies zero correlation” is immediate. Now suppose that the
components Xk are uncorrelated. Then the matrix Σ is diagonal. By the previous proposition,

ΦX(ξ) = exp

(
i ⟨ξ,E[X]⟩ − 1

2
⟨ξ,Σξ⟩

)
Since Σ is diagonal,

= exp

(
i

N∑
k=1

ξkE[Xk]−
1

2

N∑
k=1

ξ2kvar(Xk)

)

=

N∏
k=1

exp

(
iξkE[Xk]−

1

2
ξ2kvar(Xk)

)
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=

N∏
k=1

ΦXk
(ξk),

which implies, via Proposition A.1 on page 188, the independence of the components of the vector
X.

Definition 3.6 (Gaussian Process). Let X := {Xt, t ≥ 0} be a stochastic process defined on the
probability space (Ω,F ,P). The process X is said to be Gaussian if for all N ∈ N and for all
t0 ≤ · · · ≤ tN ∈ R+, the vector (Xt0 , · · · , XtN ) is Gaussian.
If X is a Gaussian process, then (by Proposition 2.2) its law is completely characterized by its mean
function eX : t 7→ E[Xt] and its covariance operator Σ : (s, t) 7→ cov(Xs, Xt). Some examples:

• The Brownian motion starting from zero (to be studied later) is a Gaussian process B =
{Bt, t ≥ 0} with continuous sample paths, whose mean function eB and covariance operator
KB are given by eB(t) = 0 and KB(s, t) = min(s, t).

• The Brownian bridge is a Gaussian process Π = {Πt, t ∈ [0, 1]} with continuous sample paths
satisfying eΠ(t) = 0 and KΠ(t, s) = min(s, t)− st.

4 Martingales in Continuous Time

Definition 4.1 (F-martingale in continuous time). Let M = {Mt, t ≥ 0} be an adapted stochastic
process defined on the probability space (Ω,F ,P) equipped with the filtration F . We say that M is
a martingale if:

1. For all t ≥ 0, the random variable Mt is integrable;

2. For all 0 ≤ s ≤ t, E[Mt|Fs] = Ms.

When, instead of point 2, the process Mt satisfies ∀s ≤ t : Ms ≤ E[Mt|Fs] (resp. ∀s ≤ t : Ms ≥
E[Mt|Fs]), the process M is called a sub-martingale (resp. super-martingale).

Intuition 2.2.1 If we consider a game where one gains Mt at any instant t and we compare the
expected gain at time t given that at the present time s ≤ t the gain is Ms, then a martingale is a
fair game, a super-martingale is a losing game, and a sub-martingale is a winning game.

Definition 4.2 (Stopping time). Let F = {Ft, t ≥ 0} be a filtration. A random variable τ : Ω →
R+ ∪ {+∞} is a stopping time if for all t ≥ 0, {τ ≤ t} ∈ Ft.

Definition 4.3 (Local F-martingale in continuous time). Let M = {Mt, t ≥ 0} be an adapted
stochastic process defined on the probability space (Ω,F ,P) equipped with the filtration F . The
process M is said to be a local martingale if there exists a strictly increasing sequence of stopping
times (Tn)n≥1 such that:

1. The sequence Tn converges almost surely to +∞;
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2. For all n ≥ 0, the process MTn := {Mt∧Tn , t ≥ 0} is a martingale.

Proposition 4.4. Let M = {Mt, t ≥ 0} be a martingale defined on the probability space (Ω,F ,P)
equipped with the filtration F . Let Φ : R → R be a convex function such that for all t ≥ 0, the
random variable Φ(Mt) is integrable. We define the process MΦ by: MΦ

t := Φ(Mt), t ≥ 0.

1. MΦ is a sub-martingale on (Ω,F ,P;F);

2. If M is only a sub-martingale but Φ is increasing, then MΦ is also a sub-martingale.

Proof. One needs to use Jensen’s inequality for conditional expectations (see section A.5, Proposi-
tion A.5, point 9 on page 192).

The result of Proposition A.7 on page 194, valid for discrete-time sub-martingales, can be extended
to sub-martingales (and in particular to martingales) with continuous paths. In fact, it is sufficient
to have processes with càdlàg paths (right-continuous with left limits, see [15]). We obtain:

Proposition 4.5 (Doob’s maximal inequality). Let M = {Mt, t ≥ 0} be a sub-martingale defined
on the probability space (Ω,F ,P) equipped with the filtration F . Suppose M has continuous paths.
Then for all 0 ≤ τ < T and all λ > 0, we have

λP

(
sup

s∈[τ,T ]

Ms ≥ λ

)
≤ E[|MT |1{sups∈[τ,T ] Ms≥λ}] ≤ E[|MT |].

Important technique 2.2.1 The result is demonstrated in the appendix for the discrete-time case.
To pass to continuous time, we will use the (countable) set of rational times and use continuity for
the other times.

Proof. Let D be the countable set D := ([τ, T ] ∩Q) ∪ {T}.

1. First, we show that sups∈[τ,T ] Ms = sups∈D Ms. SinceD ⊂ [τ, T ], it is clear that sups∈[τ,T ] Ms ≥
sups∈D Ms. Let t ∈ [τ, T ] and ω ∈ Ω be arbitrary but fixed. We can find a sequence sn ∈ D
such that sn → t. Then sups∈D Ms(ω) ≥ Msn(ω) for all n. By taking the limit and using
the continuity of the path, we obtain sups∈D Ms(ω) ≥ Mt(ω). Since this holds for arbitrary
t and ω, we get sups∈D Ms(ω) ≥ supt∈[τ,T ] Mt(ω), leading to the announced equality.

2. It is possible to consider a sequence of finite sets (Fn)n≥0 such that Fn ⊂ Fn+1 ⊂ D, T =
maxFn for all n, and

⋃
n Fn = D. Proposition A.7 applied to the sub-martingale {Ms, s ∈ Fn}

gives:

λP
(
sup
s∈Fn

Ms ≥ λ

)
≤ E[|MT |1{sups∈Fn

Ms≥λ}] ≤ E[|MT |1{sups∈[τ,T ] Ms≥λ}].

Since the sequence of sets Fn is increasing:

P
(
sup
s∈D

Ms ≥ λ

)
= lim

n→∞
P
(
sup
s∈Fn

Ms ≥ λ

)
.
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We then conclude that:

λP
(
sup
s∈D

Ms ≥ λ

)
= lim

n→∞
λP
(
sup
s∈Fn

Ms ≥ λ

)
≤ E[|MT |1{sups∈[τ,T ] Ms≥λ}].

The following result is a consequence of Proposition 2.4.

Proposition 4.6 (Doob’s inequality II). Let M be a martingale defined on the probability space
(Ω,F ,P) equipped with the filtration F . Suppose M has continuous paths. Then for all 0 ≤ τ < T
and p > 1, we have

E

[(
sup

s∈[τ,T ]

|Ms|

)p]
≤ pp

(p− 1)p
E[|MT |p].

Proof. Let M∗ := sups∈[τ,T ] |Ms|. Let L be a positive real number. Then

E[(M∗ ∧ L)p] =

∫ L

0

pλp−1P(M∗ ≥ λ)dλ =

∫ L

0

pλp−11{M∗≥λ}dλ.

By Fubini’s theorem, we have

E[(M∗ ∧ L)p] =

∫ L

0

pλp−1P(M∗ ≥ λ)dλ.

Applying Proposition 2.4 to the sub-martingale |M |, we get:

E[(M∗ ∧ L)p] ≤
∫ L

0

pλp−2E[|MT |1{M∗≥λ}]dλ =

∫ L

0

pλp−2E[|MT |1{M∗≥λ}]dλ.

Applying Hölder’s inequality, we get:

E[(M∗ ∧ L)p] ≤ (E[|MT |p])
1
p (E[(M∗ ∧ L)p])

p−1
p .

It follows that:

E[(M∗ ∧ L)p] ≤ pp

(p− 1)p
E[|MT |p].

Finally, letting L → +∞ and using the monotone convergence argument (see Proposition A.2, point
A.2 on page 190), we obtain the desired inequality.

Intuition 2.2.2 The previous inequalities are useful to obtain information about the behavior of the
entire trajectory of a sub-martingale {Mt, t ≥ 0} using only the values of MT at the final time T .
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5 Brownian Motion

Definition 5.1 (Real Brownian Motion). Let W = Wt, t ≥ 0 be a process defined on the filtered
probability space (Ω,F ,F,P):

1. W is a process with continuous paths;

2. W has independent increments, i.e., for all 0 ≤ s ≤ t, the random variable Wt − Ws is
independent of Fs;

3. For all 0 ≤ s ≤ t, the random variable Wt − Ws follows a normal distribution with mean 0
and variance t− s.

If additionally W0 = 0, we say that W is a standard Brownian motion (respectively non-standard
Brownian motion). When the filtration F is given a priori, a process F-adapted that satisfies the
above conditions is called an F-Brownian motion. In all that follows, unless explicitly stated other-
wise, we will assume W0 = 0.

5.1 Remarks

There is a lot of information in this definition that needs to be detailed.

1. The state of the system at time t, Wt, is a Gaussian random variable with mean 0 (E[Wt] = 0)
and variance E[W 2

t ] = t, which increases the longer the system evolves.

2. The probability that Wt belongs to a small interval [x, x+dx] is given by the Gaussian density:

P(Wt ∈ [x, x+ dx]) = g(t, x)dx =
1√
2πt

exp

(
−x2

2t

)
dx.

In particular, with at least 95% probability, |Wt| ≤ 2
√
t (see Figure 1.1). This does not

exclude the possibility of a large movement in a short time, but it is unlikely. Such bounds
play a significant role in finance.

3. The random variable Wt is the sum of its increments, i.e., the sum of independent Gaussian
random variables with the same distribution. This infinitesimal decomposition is the basis of
stochastic differential calculus.

4. This property is a consequence of a classic result about Gaussian variables with distribution
N(m,σ2):

P(|X −m| ≤ 2σ) ≈ 0.95.

6 Properties of Brownian Motion

Proposition 6.1 (Properties of Brownian Motion).

1. Symmetry Properties: If {Wt; t ≥ 0} is a standard Brownian motion, then {−Wt; t ≥ 0}
is also a standard Brownian motion.
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2. Scaling Properties: If {Wt; t ≥ 0} is a Brownian motion, then for any c > 0, the process

{Wct; t ≥ 0} defined by
{

1√
c
Wct; t ≥ 0

}
is also a Brownian motion.

3. Time Reversal: The time-reversed process W r = {WT − WT−t; t ∈ [0, T ]} is a Brownian
motion on [0, T ].

4. Time Inversion: The time-inverted process
{

1
tW1/t; t > 0,W0 = 0

}
is a Brownian motion.

Proof:

. 1. Symmetry Properties:

Let {Wt; t ≥ 0} be a standard Brownian motion. We need to show that {−Wt; t ≥ 0} is also
a standard Brownian motion. We check the three defining properties of a standard Brownian
motion:

(a) Continuous paths: Since Wt has continuous paths and the negative of a continuous
function is also continuous, {−Wt; t ≥ 0} has continuous paths.

(b) Independent increments: For any 0 ≤ s ≤ t, Wt − Ws is independent of Fs. Since
−Wt + Ws = −(Wt − Ws), and the negative of an independent increment is still an
independent increment, {−Wt; t ≥ 0} has independent increments.

(c) Normal distribution of increments: For any 0 ≤ s ≤ t, Wt − Ws ∼ N(0, t − s). Thus,
−Wt +Ws ∼ N(0, t− s) since multiplying by −1 does not change the mean or variance
of a normal distribution. Therefore, −Wt +Ws ∼ N(0, t− s).

Hence, {−Wt; t ≥ 0} is also a standard Brownian motion.

2. Scaling Properties:

Let {Wt; t ≥ 0} be a standard Brownian motion. We need to show that the process
{

1√
c
Wct; t ≥ 0

}
is also a standard Brownian motion. We check the defining properties:

(a) Continuous paths: Since Wt has continuous paths, Wct has continuous paths for any

c > 0. Multiplying by a constant 1√
c
does not affect continuity, so

{
1√
c
Wct; t ≥ 0

}
has

continuous paths.

(b) Independent increments: For any 0 ≤ s ≤ t, Wt − Ws is independent of Fs. Hence,
Wct −Wcs is independent of Fcs because Fcs ⊆ Fct. Multiplying by 1√

c
does not change

the independence of increments.

(c) Normal distribution of increments: For any 0 ≤ s ≤ t, Wt − Ws ∼ N(0, t − s). Then,
Wct−Wcs ∼ N(0, c(t−s)). Hence, 1√

c
(Wct−Wcs) ∼ N(0, t−s) because scaling a normal

random variable by 1√
c
scales the variance by 1

c .

Therefore,
{

1√
c
Wct; t ≥ 0

}
is also a standard Brownian motion.

3. Time Reversal:

Let {Wt; t ≥ 0} be a standard Brownian motion. We need to show thatW r = {WT−WT−t; t ∈
[0, T ]} is a Brownian motion on [0, T ]. We check the properties:
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(a) Continuous paths: Wt has continuous paths, so WT −WT−t has continuous paths since
it is composed of continuous functions.

(b) Independent increments: For any 0 ≤ s ≤ t ≤ T , consider the increments W r
t2 −W r

t1 =
(WT −WT−t2)−(WT −WT−t1) = WT−t1−WT−t2 . Since Wt has independent increments,
WT−t1 − WT−t2 is independent of the past increments of the form WT−s − WT−u for
u < s ≤ t1. Thus, W

r has independent increments.

(c) Normal distribution of increments: For any 0 ≤ s ≤ t ≤ T , the increment WT−s −
WT−t ∼ N(0, t− s). Thus, W r

t2 −W r
t1 ∼ N(0, t1 − t2).

Hence, W r = {WT −WT−t; t ∈ [0, T ]} is a Brownian motion on [0, T ].

4. Time Inversion:

Let {Wt; t ≥ 0} be a standard Brownian motion. We need to show that the process
{

1
tW1/t; t > 0,W0 = 0

}
is a Brownian motion. We check the properties:

(a) Continuous paths: Wt has continuous paths. The mapping t 7→ 1
t is continuous for

t > 0, and W1/t has continuous paths. Multiplying by 1
t does not affect continuity, so{

1
tW1/t; t > 0

}
has continuous paths.

(b) Independent increments: Consider 0 < s < t. The increments of the time-inverted
process are given by 1

sW1/s− 1
tW1/t. For 0 < s < t, W1/s−W1/t is independent of F1/t.

Scaling by 1
s and 1

t does not change the independence of these increments.

(c) Normal distribution of increments: The increments 1
sW1/s − 1

tW1/t are normal because

W1/s − W1/t ∼ N(0, 1/t − 1/s). Scaling by 1
s and 1

t , we get
(
1
s − 1

t

) W1/s−W1/t√
1/t−1/s

∼
N(0, 1/t− 1/s).

Hence,
{

1
tW1/t; t > 0,W0 = 0

}
is a Brownian motion.
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